zscore因子计算及策略回测
所属分类 quant
浏览量 212
Techical Analysis of Stock & Commodities
Z-score: How to use it in Trading
Z-score 计算公式
Z = (X - μ) / σ
μ 均值
σ 标准差,也称波动率
假设 X 服从正态分布
3个标准差(σ)原则,或者68-95-99.7原则
pandas 滚动计算 Z-score
def rolling_zscore(s, win=20):
ma = s.rolling(window=win).mean()
std = s.rolling(window=win).std()
return (s - ma)/std
rolling_mean = close_prices.rolling(window=period).mean()
rolling_std = close_prices.rolling(window=period).std()
z_scores = (close_prices - rolling_mean) / rolling_std
计算最近 250 天的 zscore, 买点 zscore 小于-2 ,卖点 zscore 大于 2
布林通道 上下轨 均值 ± 2个标准差
z-score 因子的有效性来源于正态分布的假设
然而,股价的波动并不符合正态分布
import pandas as pd
import matplotlib.pyplot as plt
# 常量
Z_THRESH = 2
PERIODS = [30, 60, 90]
TICKER_SYMBOL = "hs300"
START_DATE = '2020-1-1'
# END_DATE 暂不使用
END_DATE = '2023-12-25'
def fetch_data(ticker_symbol, start_date, end_date):
"""Fetches historical data for a given ticker symbol."""
# ticker_data = yf.Ticker(ticker_symbol)
# 不使用 yfinance ,读取本地文件
# /demo/myweb2020/docs/Q/data/hs300
ticker_data = pd.read_csv('/Users/dugang/tmp/hs300.txt')
# return ticker_data.history(period='1d', start=start_date, end=end_date)
ticker_data = ticker_data[ticker_data['date']>=start_date]
return ticker_data
def calculate_z_scores(close_prices, periods):
"""Calculates Z-scores for given periods."""
z_scores_dict = {}
for period in periods:
# 计算给定周期的滚动平均值
rolling_mean = close_prices.rolling(window=period).mean()
# 计算给定周期的滚动标准差
rolling_std = close_prices.rolling(window=period).std()
# 计算收盘价的Z值
z_scores = (close_prices - rolling_mean) / rolling_std
# 将Z值存储在以周期为关键字的字典中
z_scores_dict[period] = z_scores
return z_scores_dict
def plot_data(close_prices, z_scores_data):
"""Plots close prices and z-scores."""
# 为收盘价和Z值创建子图
fig, (ax1, ax2) = plt.subplots(2, sharex=True, figsize=(20, 8))
# 在第一个子图上绘制收盘价
ax1.plot(close_prices.index, close_prices, label='Close Prices')
for period, z_scores in z_scores_data.items():
# 在第二个子图上绘制每个时期的Z值
ax2.plot(z_scores.index, z_scores, label=f'Z-Scores {period} days', alpha=0.7)
# 如果周期是列表中的第一个,则在第一个子图上绘制买入/卖出信号
if period == PERIODS[0]:
buy_signals = (z_scores < -Z_THRESH)
sell_signals = (z_scores > Z_THRESH)
ax1.plot(close_prices[buy_signals].index, close_prices[buy_signals], 'o', color='g', label='Buy Signal')
ax1.plot(close_prices[sell_signals].index, close_prices[sell_signals], 'o', color='r', label='Sell Signal')
# 为收盘价子图设置y标签和图例
ax1.set_ylabel('Close Prices')
ax1.legend(loc="upper left")
ax1.grid(True)
# 在Z值子图上绘制表示Z值阈值的水平线
ax2.axhline(-Z_THRESH, color='red', linestyle='--')
ax2.axhline(Z_THRESH, color='red', linestyle='--')
# 设置Z值子图的Y标签和图例
ax2.set_ylabel('Z-Scores')
ax2.legend(loc="upper left")
ax2.grid(True)
# 为整个绘图设置主标题
plt.suptitle(f'{TICKER_SYMBOL} Close Prices and Z-Scores {Z_THRESH} Treshold')
# 显示图表
plt.show()
# 获取股票代码的历史数据
ticker_data = fetch_data(TICKER_SYMBOL, START_DATE, END_DATE)
# 计算指定时期的Z值
z_scores_data = calculate_z_scores(ticker_data['close'], PERIODS)
# 绘制收盘价和Z值
plot_data(ticker_data['close'], z_scores_data)
日线数据接口 由歪枣网提供
http://waizaowang.com/api/detail/1007
date,open,close,high,low,a,v
2005-01-04,994.77,982.79,994.77,980.66,7412870.0,4431980032
2005-01-05,981.58,992.56,997.32,979.88,7119110.0,4529209856
2005-01-06,993.33,983.17,993.79,980.33,6288030.0,3921019904
沪深300
http://api.waizaowang.com/doc/getIndexDayKLine?code=000300&ktype=101&startDate=1990-01-01&endDate=2100-01-01&fields=tdate,open,close,high,low,cjl,cje&export=0&token=xxx
token 注册账号 登录后获取
上一篇
下一篇
Python数据分析中的统计学基础概念
数学公式中的希腊字母
温和世界 和 疯狂世界
Python统计学极简入门笔记 01 统计学简介
Python统计学极简入门笔记 02 描述性统计
Python统计学极简入门笔记 03 数据分布