人工智能领域常用算法
所属分类 AI
浏览量 456
线性回归(Linear Regression)
逻辑回归(Logistic regression)
决策树
朴素贝叶斯(Naive Bayes)
支持向量机(Support Vector Machine,SVM)
K-最近邻算法(K-Nearest Neighbors,KNN)
K-均值(K-means)
随机森林(Random Forest)
降维(Dimensionality reduction)
人工神经网络(Artificial Neural Networks,ANN)
线性回归(Linear Regression)是最流行的机器学习算法。
线性回归就是要找一条直线,让这条直线尽可能地拟合散点图中的数据点。
这种算法最常用的技术是最小二乘法(Least of squares)。
这个方法计算出最佳拟合线,以使得与直线上每个数据点的垂直距离最小。总距离是所有数据点的垂直距离的平方和。
通过最小化这个平方误差或距离来拟合模型。
简单线性回归,它有一个自变量(x 轴)和一个因变量(y 轴)
比如预测明年的房价涨幅、下一季度新产品的销量等。
逻辑回归
逻辑回归(Logistic regression)与线性回归类似,但逻辑回归的结果只能有两个的值。
如果说线性回归是在预测一个开放的数值,那逻辑回归更像是做一道是或不是的判断题。
逻辑函数中Y值的范围从 0 到 1,是一个概率值。逻辑函数通常呈S 型,曲线把图表分成两块区域,因此适合用于分类任务。
逻辑回归经常被电商或者外卖平台用来预测用户对品类的购买偏好。
决策树
如果说线性和逻辑回归都是把任务在一个回合内结束,那么决策树(Decision Trees)就是一个多步走的动作,
它同样用于回归和分类任务中,不过场景通常更复杂且具体。
举个简单例子,老师面对一个班级的学生,哪些是好学生?如果简单判断考试90分就算好学生好像太粗暴了,不能唯分数论。
那面对成绩不到90分的学生,可以从作业、出勤、提问等几个方面分开讨论。
每个特征的重要性是通过自顶向下方法确定的。节点越高,其属性就越重要。
比如在上面例子中的老师就认为出勤率比做作业重要,所以出勤率的节点就更高,当然分数的节点更高。
朴素贝叶斯
朴素贝叶斯(Naive Bayes)是基于贝叶斯定理,即两个条件关系之间。
它测量每个类的概率,每个类的条件概率给出 x 的值。这个算法用于分类问题
朴素贝叶斯分类器是一种流行的统计技术,经典应用是过滤垃圾邮件。
通过A条件下发生B的概率,去得出B条件下发生A的概率。
比如说,小猫喜欢你,有a%可能性在你面前翻肚皮,请问小猫在你面前翻肚皮,有多少概率喜欢你?
支持向量机
支持向量机(Support Vector Machine,SVM)是一种用于分类问题的监督算法。
支持向量机试图在数据点之间绘制两条线,它们之间的边距最大。
将数据项绘制为 n 维空间中的点,其中,n 是输入特征的数量。
在此基础上,支持向量机找到一个最优边界,称为超平面(Hyperplane),它通过类标签将可能的输出进行最佳分离。
超平面与最近的类点之间的距离称为边距。
最优超平面具有最大的边界,可以对点进行分类,从而使最近的数据点与这两个类之间的距离最大化。
所以支持向量机想要解决的问题也就是如何把一堆数据做出区隔,它的主要应用场景有字符识别、面部识别、文本分类等各种识别。
K-最近邻算法(KNN)
K-最近邻算法(K-Nearest Neighbors,KNN)通过在整个训练集中搜索 K 个最相似的实例,即 K 个邻居,
并为所有这些 K 个实例分配一个公共输出变量,来对对象进行分类。
K 的选择很关键:较小的值可能会得到大量的噪声和不准确的结果,而较大的值是不可行的。它最常用于分类,但也适用于回归问题。
用于评估实例之间相似性的距离可以是欧几里得距离(Euclidean distance)、曼哈顿距离(Manhattan distance)或明氏距离(Minkowski distance)。
欧几里得距离是两点之间的普通直线距离。它实际上是点坐标之差平方和的平方根。
KNN理论简单,容易实现,可用于文本分类、模式识别、聚类分析等。
K-均值
K-均值(K-means)通过对数据集进行分类来聚类。
例如,这个算法可用于根据购买历史将用户分组。它在数据集中找到 K 个聚类。
K-均值用于无监督学习,只需使用训练数据 X,以及想要识别的聚类数量 K
该算法根据每个数据点的特征,将每个数据点迭代地分配给 K 个组中的一个组。
它为每个 K-聚类(称为质心)选择 K 个点。
基于相似度,将新的数据点添加到具有最近质心的聚类中。这个过程一直持续到质心停止变化为止。
K-均值在欺诈检测中扮演了重要角色,在汽车、医疗保险和保险欺诈检测领域中广泛应用。
随机森林
随机森林(Random Forest)是一种流行的集成机器学习算法。
这个算法的基本思想是,许多人的意见要比个人的意见更准确。
在随机森林中,使用决策树集成
在训练过程中,每个决策树都是基于训练集的引导样本来构建的。
在分类过程中,输入实例的决定是根据多数投票做出的。
随机森林拥有广泛的应用前景,从市场营销到医疗保健保险,
既可以用来做市场营销模拟的建模,统计客户来源、保留及流失,也可以用来预测疾病的风险和病患者的易感性。
降维
大数据,机器学习问题变得复杂,训练极其缓慢,而且很难找到一个好的解决方案。
这一问题,通常被称为“维数灾难”(Curse of dimensionality)
降维(Dimensionality reduction)试图在不丢失最重要信息的情况下,通过将特定的特征组合成更高层次的特征来解决这个问题。
主成分分析(Principal Component Analysis,PCA)是最流行的降维技术。
主成分分析通过将数据集压缩到低维线或超平面 / 子空间来降低数据集的维数。尽可能地保留了原始数据的显著特征。
人工神经网络(ANN)
人工神经网络(Artificial Neural Networks,ANN)可以处理大型复杂的机器学习任务。
神经网络本质上是一组带有权值的边和节点组成的相互连接的层,称为神经元。
在输入层和输出层之间,可以插入多个隐藏层。
人工神经网络使用了两个隐藏层。除此之外,还需要处理深度学习。
人工神经网络的工作原理与大脑的结构类似。
一组神经元被赋予一个随机权重,以确定神经元如何处理输入数据。
通过对输入数据训练神经网络来学习输入和输出之间的关系。
在训练阶段,系统可以访问正确的答案。
如果不能准确识别输入,系统就会调整权重。经过充分的训练后,识别出正确的模式。
每个圆形节点表示一个人工神经元,箭头表示从一个人工神经元的输出到另一个人工神经元的输入的连接。
图像识别,就是神经网络中的一个应用
上一篇
下一篇
统计分析关键术语
python计算四分位
肥尾效应
Java Statistical Analysis Tool
程序员数学 用Python学透线性代数和微积分
数学学习资料汇总