numpy polyfit 多项式拟合
所属分类 quant
浏览量 433
numpy.polyfit 多项式拟合
numpy.polyfit(x, y, deg)
x 自变量数组
y 因变量数组
deg 要拟合的多项式的次数
import numpy as np
x = np.array([1, 2, 3, 4, 5])
y = np.array([3, 4, 5, 6, 7])
coefficients = np.polyfit(x, y, deg=1)
print(coefficients)
[1. 2.]
y = x + 2
金融时序数据分析
斜率 趋势线
沪深300 20230818 到 20230825的数据
20230818 3784.00
20230821 3729.56
20230822 3758.23
20230823 3696.63
20230824 3723.43
20230825 3709.15
[3784.00,3729.56,3758.23,3696.63,3723.43,3709.15]
x = np.array([1,2,3,4,5,6])
y = np.array([3784.00,3729.56,3758.23,3696.63,3723.43,3709.15])
coefficients = np.polyfit(x, y, deg=1)
print(coefficients)
print(coefficients[0] / coefficients[1])
[ -12.97828571 3778.924 ]
-0.0034343865381482983
同期ETF 数据
y = np.array([3.852,3.800,3.823,3.768,3.791,3.784])
[-0.01205714 3.8452 ]
-0.003135634780282715
数组数据 除以 第一个值
x = np.array([1,2,3,4,5,6])
y = np.array([3784.00,3729.56,3758.23,3696.63,3723.43,3709.15])
# y = np.array([3.852,3.800,3.823,3.768,3.791,3.784])
y = y / y[0]
print(y)
coefficients = np.polyfit(x, y, deg=1)
print(coefficients)
沪深300指数
[1. 0.98561311 0.99318975 0.97691068 0.98399313 0.98021934]
[-0.00342978 0.99865856]
沪深300ETF
[1. 0.98650052 0.99247144 0.97819315 0.98416407 0.98234683]
[-0.0031301 0.99823468]
上一篇
下一篇
python实用代码
2023中国量化科技白皮书数据解读
AIGC术语
沪深300指数和沪深300ETF 对比分析
时序数据趋势判断
沪深300 线性回归画趋势线